Temporal Workers when run in Kubernetes-based deployments can be easily scaled and managed. Amazon EKS (Elastic Kubernetes Service) is a popular choice for running Temporal workers. It integrates seamlessly with other AWS services and provides automatic scaling and fault tolerance, which are essential for production-grade applications.
Follow this guide to deploy and manage your Temporal Workers in EKS. You can generally apply this content to both self-hosted Temporal and Temporal Cloud Workflows, but please account for some differences in authentication. For example, you may use mTLS certs instead of API keys when self-hosting Temporal.
To get started deploying your Workers to EKS, you’ll need:
aws CLI
docker
kubectl
command line tool, configured with your deployed EKS clusterThis guide walks you through writing Temporal Worker code, containerizing and publishing the Worker to the Amazon Elastic Container Registry (ECR), and deploying the worker to Amazon EKS. The example in this post uses Temporal’s Python SDK.
In Temporal applications, business logic lives within your main Workflow code. Your Worker code runs separately, and is responsible for executing your Workflows and Activities. Make sure to configure your Worker to use environment variables so you can dynamically route your Worker to different Temporal Instances, Namespaces, and Task Queues on the fly:
TEMPORAL_ADDRESS = os.environ.get("TEMPORAL_ADDRESS", "localhost:7233")
TEMPORAL_NAMESPACE = os.environ.get("TEMPORAL_NAMESPACE", "default")
TEMPORAL_TASK_QUEUE = os.environ.get("TEMPORAL_TASK_QUEUE", "test-task-queue")
TEMPORAL_API_KEY = os.environ.get("TEMPORAL_API_KEY", "")
After configuration, instantiate your Temporal client:
client = await Client.connect(
TEMPORAL_ADDRESS,
namespace=TEMPORAL_NAMESPACE,
rpc_metadata={"temporal-namespace": TEMPORAL_NAMESPACE},
api_key=TEMPORAL_API_KEY,
tls=True
)
Now, instantiate and run your Worker:
worker = Worker(
client,
task_queue=TEMPORAL_TASK_QUEUE,
workflows=[your_workflow],
activities=[
your_first_activity,
your_second_activity,
your_third_activity
]
)
await worker.run()
Here is a complete Python boilerplate that showcases how to instantiate a Client and pass it to the Worker before starting the Worker execution:
import asyncio
import os
from temporalio.worker import Worker
from temporalio.client import Client
from workflows import your_workflow
from activities import your_first_activity, your_second_activity, your_third_activity
TEMPORAL_ADDRESS = os.environ.get("TEMPORAL_ADDRESS", "localhost:7233")
TEMPORAL_NAMESPACE = os.exxxnviron.get("TEMPORAL_NAMESPACE", "default")
TEMPORAL_TASK_QUEUE = os.environ.get("TEMPORAL_TASK_QUEUE", "test-task-queue")
TEMPORAL_API_KEY = os.environ.get("TEMPORAL_API_KEY", "you-api-key")
async def main():
client = await Client.connect(
TEMPORAL_ADDRESS,
namespace=TEMPORAL_NAMESPACE,
rpc_metadata={"temporal-namespace": TEMPORAL_NAMESPACE},
api_key=TEMPORAL_API_KEY,
tls=True
)
print("Initializing worker...")
# Run the worker
worker = Worker(
client,
task_queue=TEMPORAL_TASK_QUEUE,
workflows=[your_workflow],
activities=[
your_first_activity,
your_second_activity,
your_third_activity
]
)
print("Starting worker... Waiting for tasks.")
await worker.run()
if __name__ == "__main__":
asyncio.run(main())
You need to containerize your Worker code to run it with Kubernetes. Here is a sample Python Dockerfile, complete with the Temporal Python SDK installed:
# Use Python 3.11 slim image as base
FROM python:3.11-slim
# Set working directory
WORKDIR /app
# Install system dependencies
RUN apt-get update && apt-get install -y \
gcc \
&& rm -rf /var/lib/apt/lists/*
# Install the Temporal Python SDK dependency
RUN pip install --no-cache-dir temporalio
# Copy application code
COPY . .
# Set Python to run in unbuffered mode
ENV PYTHONUNBUFFERED=1
# Run the worker
CMD ["python", "worker.py"]
Build the Docker image and target the linux/amd64
architecture:
docker buildx build --platform linux/amd64 -t your-app .
After building the Docker image, you’re ready to publish it to Amazon ECR . Make sure that you’re authenticated with AWS, and that you’ve set your AWS_REGION
and AWS_ACCOUNT_ID
environment variables:
export AWS_ACCOUNT_ID=<your_aws_account_id>
export AWS_REGION=<your_aws_region>
Create an ECR repository and authenticate ECR with the Docker container client:
aws ecr create-repository --repository-name your-app
aws ecr get-login-password --region $AWS_REGION | docker login --username AWS --password-stdin $AWS_ACCOUNT_ID.dkr.ecr.$AWS_REGION.amazonaws.com
After authenticating Docker with ECR, tag your container and publish it:
docker tag your-app $AWS_ACCOUNT_ID.dkr.ecr.$AWS_REGION.amazonaws.com/your-app:latest
docker push $AWS_ACCOUNT_ID.dkr.ecr.$AWS_REGION.amazonaws.com/your-app:latest
With your Worker containerized, you’re ready to deploy it to EKS. Create a namespace in your EKS cluster. You’ll use the namespace to run your Temporal Workers:
kubectl create namespace your-namespace
Create a ConfigMap
to hold non-sensitive values that Kubernetes will injectinto your Worker deployment. These enable dynamic routing for instances, Namespaces, and Task Queues. Create a config-map.yaml
file like the following example, which sets these values:
apiVersion: v1
kind: ConfigMap
metadata:
name: temporal-worker-config
namespace: temporal-system
data:
TEMPORAL_HOST_URL: “<your-temporal-address>“
TEMPORAL_NAMESPACE: “<your-temporal-cloud-namespace>”
TEMPORAL_TASK_QUEUE: “<your-task-queue>”
Apply the ConfigMap
to your namespace:
kubectl apply -f config-map.yaml \
--namespace your-namespace
For sensitive values, use Kubernetes Secrets. Create a secret to hold your Temporal API key:
kubectl create secret generic temporal-secret \
--from-literal=TEMPORAL_API_KEY=$TEMPORAL_API_KEY \
--namespace your-namespace
With your configuration in place, you can deploy the Worker. Create a deployment.yaml
file configuring your Worker image, resources, and secret values. In normal deployment, tune your resources
for production workloads. Note that the spun-up container reads your Temporal API key from the Kubernetes secret you just created:
apiVersion: apps/v1
kind: Deployment
metadata:
name: your-app
namespace: your-namespace
labels:
app: your-app
spec:
selector:
matchLabels:
app: your-app
replicas: 1
template:
metadata:
labels:
app: your-app
spec:
serviceAccountName: your-app
containers:
- name: your-app
image: <your-ecr-image-name>
env:
- name: TEMPORAL_ADDRESS
valueFrom:
configMapKeyRef:
name: temporal-worker-config
key: TEMPORAL_ADDRESS
- name: TEMPORAL_NAMESPACE
valueFrom:
configMapKeyRef:
name: temporal-worker-config
key: TEMPORAL_NAMESPACE
- name: TEMPORAL_TASK_QUEUE
valueFrom:
configMapKeyRef:
name: temporal-worker-config
key: TEMPORAL_TASK_QUEUE
- name: TEMPORAL_API_KEY
valueFrom:
secretKeyRef:
name: temporal-secret
key: TEMPORAL_API_KEY
resources:
limits:
cpu: "0.5"
memory: "512Mi"
requests:
cpu: "0.2"
memory: "256Mi"
Apply the deployment.yaml
file to the EKS cluster:
kubectl apply -f deployment.yaml \
--namespace your-namespace
After deploying your Workers to EKS, confirm that they have connected to Temporal Cloud. Retrieve the pod listing for the Kubernetes/EKS namespace that you created:
kubectl get pods -n temporal-system
After listing the pods, access the Worker logs to confirm you’re properly connected to Temporal Cloud:
kubectl logs <pod-name> -n temporal-system
You confirm connection when you see:
Initializing worker...
Starting worker... Waiting for tasks.
You have now successfully deployed your Temporal Worker to EKS. Deployment, however, is only a part of the lifecycle of your workers! Stay tuned for future guides about auto-scaling your Temporal workers.
Ready to learn why companies like Netflix, Doordash, and Stripe trust Temporal as their secure and scalable way to build and innovate?